
Dronetag SCOUT - Datasheet
Version: 2.2

Changelog ... 1

Transport options ... 2

HTTP(S) .. 2

MQTT ... 2

Data Formats ... 3

JSON+ODID .. 3

Heartbeat ... 8

Changelog
 1.0: Initial version

o Added JSON+ODID data format
 1.1 (Scout v3.8.0+)

o Added heartbeat format
o Added "sn" field into JSON+ODID

 2.0 (Scout v3.10.0+)
o Support for MQTTS and MQTTS+WS (no client certs)
o BREAKING: Change URL format for MQTT
o Add "mac", "counter" and "recv_id" to JSON+ODID message

 2.1 (Scout 3.16+)
o Add gnss_altitude to heartbeat

 2.2 (Scout 3.20+)
o Add Avionics "tech" types to JSON/ODID messages

Transport options
Messages might be sent to Dronetag's servers.

Custom forwarders are also available. Forwarders support batching - then the data are
appended as-is. Every JSON ends with "\n" (hex: 0x0A) and binary messages encode their
length in their respective header.

Every URL has specific functionality described below.

HTTP(S)

URL format

http(s)://[[header-name:header-value][,other-header:other value...]@]host:port/path

It is possible to specify static HTTP headers to be sent to the client by specifying them in
the "authorization" part of URL. Separate multiple headers with comma.
E.g.: http://Authorization:Bearer jlsadoHIO@nkad=@myserver.cz:8081/optional/path

Currently, it isn't possible to authenticate dynamically (e.g using OAuth2).

MQTT

URL format

mqtt(s)(+ws)://[username:password@]host:port/path#topic

Currently, we support MQTT and MQTTS protocols where the secure variant is currently
without private client certificates. MQTT+WS and MQTTS+WS are also available with the
same constraints.

BREAKING CHANGE of 2.0: Now you can specify even /path parameter for WS and the
topic name thus moved to #fragment part of URL.

Data Formats

JSON+ODID
Textual JSON format with raw fields parsed from ODID [1][2]. No indentation, nullified invalid
fields (instead of passing invalid numeric values - e.g. for Location.Direction you will never
see 361 that denotes invalid value in [1]).

Note: Bluetooth legacy (B4) sends each message (eg. System, Location) separately so it is
up to the consumer to compose a full (PACKED) message. We intend to offer messages
aggregation but currently we recommend simply ignoring B4 messages.

Key Type Example Description

sn str 1000033
mac str MAC in stringified format XX:YY:ZZ:AA:BB:CC
counter int 13

rssi int -57 Reported RSSI by the receiving module

tech str[2] B5

Receiving technology:
- "B4" (Bluetooth legacy),
- "B5" (Bluetooth LE),
- "WN" (Wi-Fi Nan),
- "WB" (Wi-Fi Beacon),
- "AB" (ADS-B),
- "AL" (ADS-L),
- "UT" (UAT 978MHz)

recv_id int Module type ID (SRM RID:

module_id int 2
Module number that received the message.
Corresponds to the antenna position on the box.

module_type int 11 Module type that received the message. Mainly for
internal use.

msg_type int 15

ODID message type as defined in the reference:
BASIC_ID (0), LOCATION (1), AUTH (2), SELF_ID (3),
SYSTEM (4), OPERATOR_ID (5), PACKED (15),
INVALID (255); we don't forward AUTH messages

odid dict - see table 1.1

table 1.0 - JSON+ODID top-level fields

ODID/JSON "odid" field

BasicID list of Basic IDs see table 1.2
Location dict | null see table 1.3
SelfID dict | null see table 1.4
System dict | null see table 1.5
OperatorID dict | null see table 1.6

table 1.1 - JSON+ODID "odid" field

JSON+ODID "odid. BasicID" field

This field is AN ARRAY of the objects described in the table below.

Key Type Example Description
UAType int 0

UNKNOWN=0, AEROPLANE=1,
HELICOPTER_OR_MULTIROTOR=2,
GYROPLANE=3, HYBRID_LIFT=4,
ORNITHOPTER=5, GLIDER=6, KITE=7,
FREE_BALLOON=8, CAPTIVE_BALLOON=9,
AIRSHIP=10, FREE_FALL_PARACHUTE=11,
ROCKET=12,
TETHERED_POWERED_AIRCRAFT=13,
GROUND_OBSTACLE=14, OTHER=15

IDType int 1
NONE=0, SERIAL_NUMBER=1,
CAA_REGISTRATION_ID=2,
UTM_ASSIGNED_UUID=3,
SPECIFIC_SESSION_ID=4

UASID str e.g.: 1596F350457791312042
table 1.2 - JSON+ODID "odid.BasicID[]" field

JSON+ODID "odid.Location" field

Position of the aircraft. This will be the most common message over B4. Other techs use
mainly PACKED messages with location included. Used units: M - meters, M/S - meters per
second, NM nautical miles (1.852 km).

Key Type Example Description

Status int 1
UNDECLARED = 0, GROUND = 1,
AIRBORNE = 2, EMERGENCY = 3,
REMOTE_ID_SYSTEM_FAILURE = 4,

Longitude float | null 14.4666903 -180 - +180; 7 decimal places

Latitude float | null 50.0739989 -90 - +90; 7 decimal places
Direction int | null 180 0-360 degrees

SpeedHorizontal float | null 254.25 0.0-255.0 m/s. Positive only. Invalid,
if speed is >= 254.25 m/s: 254.25m/s

SpeedVertical float | null m/s. Invalid, No Value, or Unknown:
63m/s. If speed is >= 62m/s: 62m/s

AltitudeBaro float | null 154.0 meter (Ref 29.92 inHg, 1013.24 mb)
AltitudeGeo float | null 272.0 meter (WGS84-HAE)

HeightType int 0
OVER_TAKEOFF = 0,
OVER_GROUND = 1

Height float | null meters; can be negative

HorizAccuracy int 12

UNKNOWN=0, 10NM=1, 4NM=2,
2NM=3, 1NM=4, 0_5NM=5,
0_3NM=6, 0_1NM=7, 0_05NM=8,
30M=9, 10M=10, 3M=11, 1M=12

VertAccuracy int 3 UNKNOWN=0, 150M=1, 45M=2,
25M=3, 10M=4, 3M=5, 1M=6

BaroAccuracy int 3 the same as VertAccuracy

SpeedAccuracy int 3 UNKNOWN=0, 10M/S=1, 3M/S =2,
1M/S=3, 0.3M/S =4

TSAccuracy int 1

UNKNOWN=0, 0.1s=1, 0.2s=2,
0.3s=3, 0.4s=4, 0.5s=5, 0.6s=6,
0.7s=7, 0.8s=8, 0.9s=9, 1.0s=10,
1.1s=11, 1.2s=12, 1.3s=13, 1.4s=14,
1.5s=15

Timestamp str|null
date-time in ISO 8601 format; UTC,
accuracy is given by the field above.

table 1.3 - JSON+ODID "odid.Location" field

JSON+ODID "odid.SelfID " field

The Self-ID Message is optionally sent in case the Remote Pilot wishes to declare its
identity, flight purpose or both. This may serve as mitigation of a perceived threat by a
neighbouring person or the public in case a UA is operating in the same close area.

Key Type Example Description
DescType int 0 TEXT=0, EMERGENCY=1,

EXTENDED_STATUS=2
Desc str

table 1.4 - JSON+ODID "odid.SelfID" field

JSON+ODID "odid.System " field

Contains information about the Remote Pilot location and a swarm (if applicable).

Key Type Example Description
OperatorLocationType int 0 TAKEOFF=0, LIVE_GNSS=1, FIXED=2
ClassificationType int 1 UNDECLARED=0, EU=1
OperatorLatitude float | null null -90 - +90; 7 decimal places
OperatorLongitude float | null null -180 - +180; 7 decimal places
AreaCount int 1 quantity in a swarm; default 1
AreaRadius int 250 meters, farthest horizontal distance

from any UA’s position in a group
AreaCeiling float | null 100 meters, can be negative, maximal

altitude of a swarm
AreaFloor float | null -1000 meters, can be negative, minimal

altitude of a swarm
CategoryEU int 1 UNDECLARED=0, OPEN=1,

SPECIFIC=2, CERTIFIED=3
ClassEU int 0 UNDECLARED=0, CLASS_0=1 ...

CLASS_6=7
OperatorAltitudeGeo float | null 399.0 meters (WGS84-HAE)
Timestamp str | null date-time in ISO 8601 format; UTC,

resolution 1 second
table 1.5 - JSON+ODID "odid.System" field

JSON+ODID "odid.OperatorID " field

UAS Operator Registration Number.

Key Type Example Description
OperatorIdType int 0 OPERATOR_ID=0
OperatorId str

table 1.6 - JSON+ODID "odid.OperatorID " field

JSON+ODID data sample

{"rssi": -92, "tech": "B5", "recv_id": 2, "module_id": 0, "module_type": 11, "msg_type": 15,
"odid": {"BasicID": [{"UAType": 0, "IDType": 1, "UASID": "1596F359746167260079"}],
"Location": {"Status": 1, "Direction": null, "SpeedHorizontal": null, "SpeedVertical": null,
"Latitude": null, "Longitude": null, "AltitudeBaro": -23.5, "AltitudeGeo": null, "HeightType":
0, "Height": 0.0, "HorizAccuracy": 0, "VertAccuracy": 0, "BaroAccuracy": 0,
"SpeedAccuracy": 0, "TSAccuracy": 0, "Timestamp": "2025-04-06T06:22:58"}, "SelfID": null,
"System": {"OperatorLocationType": 0, "ClassificationType": 1, "OperatorLatitude": null,
"OperatorLongitude": null, "AreaCount": 1, "AreaRadius": 0, "AreaCeiling": null,
"AreaFloor": null, "CategoryEU": 1, "ClassEU": 0, "OperatorAltitudeGeo": null,
"Timestamp": "2025-04-06T07:22:58"}, "OperatorID": {"OperatorIdType": 0, "OperatorId":
""}}}
{"rssi": -75, "tech": "B4", "recv_id": 2, "module_id": 0, "module_type": 11, "msg_type": 1,
"odid": {"BasicID": [], "Location": {"Status": 1, "Direction": null, "SpeedHorizontal": null,
"SpeedVertical": null, "Latitude": null, "Longitude": null, "AltitudeBaro": -22.5,
"AltitudeGeo": null, "HeightType": 0, "Height": 0.0, "HorizAccuracy": 0, "VertAccuracy": 0,
"BaroAccuracy": 0, "SpeedAccuracy": 0, "TSAccuracy": 0, "Timestamp": "2025-04-
06T06:22:59"}, "SelfID": null, "System": null, "OperatorID": null}}

Heartbeat
Heartbeat messages are sent periodically in JSON format.

Key Type Example Description
sn str 1000003473 Serial Number
timestamp int 0 UNIX timestamp (seconds

since 1970-01-01 00:00:00)
receivers int 2 Number of currently active

receiving modules
last_observation int | null UNIX timestamp of the last

observed message
gnss_position [float,float]

| null
 [lat, lon] if GNSS service is

available and turned on
gnss_satellites int 12 Number of visible satelites
gnss_altitude float | null 276.9 Geo altitude in metres

Heartbeat data sample

{"sn": "10000000ce49def5", "timestamp": 1752757731, "gnss_position": [50.074051483,
14.465595317], "gnss_satellites": 8, "gnss_altitude": 276.9, "last_observation":
1752757156, "receivers": 3}

References
[1] ODID reference implementation https://github.com/opendroneid/opendroneid-core-
c/blob/dfaf3b991a660ce28748bce0e9538564f2c4ee47/libopendroneid/opendroneid.h
[2] ASD-STAN D5 WG8 technical reference

https://github.com/opendroneid/opendroneid-core-c/blob/dfaf3b991a660ce28748bce0e9538564f2c4ee47/libopendroneid/opendroneid.h
https://github.com/opendroneid/opendroneid-core-c/blob/dfaf3b991a660ce28748bce0e9538564f2c4ee47/libopendroneid/opendroneid.h

	Changelog
	Transport options
	HTTP(S)
	URL format

	MQTT
	URL format

	Data Formats
	JSON+ODID
	ODID/JSON "odid" field
	JSON+ODID "odid. BasicID" field
	JSON+ODID "odid.Location" field
	JSON+ODID "odid.SelfID " field
	JSON+ODID "odid.System " field
	JSON+ODID "odid.OperatorID " field
	JSON+ODID data sample

	Heartbeat

	References

